Python API¶
-
class
genif.
GeneralizedIsolationForest
¶ - Members
models
-
__init__
(self: genif.GeneralizedIsolationForest, k: int, n_models: int, sample_size: int, kernel: str, kernel_scaling: numpy.ndarray[numpy.float64[m, 1]], sigma: float, worker_count: int = - 1, seed: int = - 1) → None¶ Initializes the GeneralizedIsolationForest with the following parameters:
- Parameters
k (int) – The number of representatives to find for each node of the tree.
n_models (int) – The number of trees to fit.
sample_size (int) – The sample size to consider for every tree to be fit.
kernel (str) – Name of the kernel to use (possible values: rbf, matern-d1, matern-d3, matern-d5).
kernel_scaling (ndarray) – Vector of scaling values for the kernel to be used (scalar for RBF,
d
-dimensional vector for Matern kernels).sigma (float) – Average pairwise kernel values of observations in a data sub-region, which should be exceeded for the exit condition to apply.
worker_count (int) – Number of parallel workers to consider (-1 defaults to all available cores).
-
fit
(self: genif.GeneralizedIsolationForest, X: numpy.ndarray[numpy.float64[m, n]]) → genif.GIFModel_ODR_Learner¶ Fits the forest using the provided input data matrix.
- Parameters
X (ndarray) – Input data matrix with shape
[n, d]
.- Returns
Callee.
-
fit_predict
(self: genif.GeneralizedIsolationForest, X: numpy.ndarray[numpy.float64[m, n]]) → numpy.ndarray[numpy.float64[m, 1]]¶ Fits the forest using the given input data matrix and predicts the probability for every input observation to be an inlier.
- Parameters
X (ndarray) – Input data matrix with shape
[n, d]
.- Returns
Vector of probabilities, represented as ndarray with shape
[n, 1]
.
-
predict
(self: genif.GeneralizedIsolationForest, X: numpy.ndarray[numpy.float64[m, n]]) → numpy.ndarray[numpy.float64[m, 1]]¶ Predicts the probability for inlierness for every entry of the data matrix. Prior to calling
predict
eitherfit
orfit_predict
has to be called.- Parameters
X (ndarray) – Input data matrix with shape
[n, d]
.- Returns
Vector of probabilities, represented as ndarray with shape
[n, 1]
.