Class GeneralizedIsolationForest¶
Defined in File GeneralizedIsolationForest.h
Inheritance Relationships¶
Base Type¶
public genif::Learner< std::vector< GIFModel >, VectorX >(Template Class Learner)
Class Documentation¶
-
class
genif::GeneralizedIsolationForest: public genif::Learner<std::vector<GIFModel>, VectorX>¶ Public Functions
-
GeneralizedIsolationForest(unsigned int k, unsigned int nModels, unsigned int sampleSize, const std::string &kernelId, const VectorX &kernelScaling, data_t sigma, int workerCount = -1, int seed = -1)¶ Instantiates a GeneralizedIsolationForest.
- Parameters
k: The number of representatives to find for each node of the tree.nModels: The number of trees to fit.sampleSize: The sample size to consider for every tree to be fit.kernelId: Name of the kernel to use (possible values: rbf, matern-d1, matern-d3, matern-d5).kernelScaling: Vector of scaling values for the kernel to be used (scalar for RBF, d-dimensional vector for Matern kernels - d being the number of dimensions of the input vectors).sigma: Average pairwise kernel values of observations in a data sub-region, which should be exceeded for the exit condition to apply.workerCount: Number of parallel workers to consider (-1 defaults to all available cores).seed: Seed to use for random number generation (-1 defaults to sysclock seed). Pass an integer for constant result across multiple runs.
-
Learner<std::vector<GIFModel>, VectorX> &
fit(const MatrixX &dataset) override¶ Fits all trees.
- Return
A reference to this object.
- Parameters
dataset: The dataset to use for fitting.
-
VectorX
predict(const MatrixX &dataset) const override¶ Predicts the outlierness of a dataset by inspecting the learned forest of trees.
- Return
A vector, which indicates the probability of inlierness for every input vector.
- Parameters
dataset: The dataset to inspect.
-
std::vector<GIFModel>
getModel() const override¶ Returns the learned vector of GIFModels i.e. the trees.
- Return
As stated above.
-
~GeneralizedIsolationForest() override = default¶ Destructor.
-